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Negative-Weight Single-Source Shortest Paths

Input: Directed graph G = (V,E,w) with w : E → Z and source s ∈ V

Goal: Compute shortest paths from s to all vertices

Assumptions:

▶ No negative-weight cycles

Challenge: Dijkstra’s algorithm requires non-negative edge weights
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Our Result

O
(
(m+ n log log n) · log(nW ) · log n log log n

)
W = maximum absolute value of a negative edge weight

Algorithm Running Time
Bellman-Ford [1958] O(mn)
Gabow-Tarjan [1989] O(m

√
n log(nW ))

Bernstein-Nanongkai-Wulff-Nilsen [2022] O(m log8 n logW )
Bringmann-Cassis-Fischer [2023] O((m+ n log log n) log(nW ) · log2 n)
This paper O((m+ n log log n) log(nW ) · log n log log n)

Nearly logn factor improvement over [BCF’23]
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Idea: Remove Negative Edges

If all edges are non-negative: Run Dijkstra in O(m+ n log logn)

Johnson’s reweighting: Transform edge weights using a potential function

Given ϕ : V → Z, define:

wϕ(u, v) = w(u, v) + ϕ(u)− ϕ(v)

Key property: For any path P from s to t:

wϕ(P ) = w(P ) + ϕ(s)− ϕ(t)

⇒ Shortest paths are preserved!
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Making All Edges Non-Negative

Observation: If ϕ(v) = shortest path distance from s to v, then:

wϕ(u, v) = w(u, v) + ϕ(u)− ϕ(v) ≥ 0

Why? Triangle inequality: ϕ(u) + w(u, v) ≥ ϕ(v)

The catch: Computing ϕ is the shortest path problem!

Our approach: Make incremental progress

▶ Halve the most negative weight

▶ Make only some edges non-negative
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Outer Problem: Halving the Most Negative Weight [BNW’22]
Let −W be the most negative edge weight in G

Define: G+ = G with:

▶ All weights increased by W/2

▶ Source s added with 0-weight edges to all vertices

Key insight: If ϕ makes (G+)ϕ non-negative, then:

wGϕ
(e) = w(G+)ϕ(e)−W/2 ≥ −W/2

Algorithm:

1. Compute ϕ making G+ non-negative [Inner problem]

2. Apply ϕ to G [Most negative weight halved!]

3. Repeat O(log(nW )) times until negative weights can be rounded to 0
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Inner Problem: Making G+ Non-Negative [BCF’23]

Goal: Compute ϕ such that (G+)ϕ has all non-negative edges

Recursive parameter: Diameter bound ∆

Decomposition Lemma

Delete few edges so that each SCC either:

▶ Has ≤ 3/4 of the vertices, or

▶ Has diameter ≤ ∆/2

Algorithm:

1. Decompose

2. Recurse on SCCs to fix edges within SCCs

3. Fix DAG edges [Linear time]

4. Fix cut edges via Bellman-Ford/Dijkstra
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Inner Problem: Decomposition Structure

Algorithm:

1. Decompose

2. Recurse on SCCs to fix edges within SCCs

3. Fix DAG edges [Linear time]

4. Fix cut edges via Bellman-Ford/Dijkstra
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Bellman-Ford/Dijkstra Hybrid [BCF’23]

After DAG edges are non-negative: Only cut edges can be negative

BF/Dijkstra hybrid:

▶ Alternates Dijkstra iterations with Bellman-Ford relaxations

▶ After i iterations: found shortest paths using ≤ i negative edges

Running time depends on # cut edges on shortest paths

Loss factor ℓ(n): Each edge cut with probability ≤ w(e) · ℓ(n)/∆

⇒ Expected cuts on path P : at most w≥0(P ) · ℓ(n)
∆

(w≥0 = negative edges set to 0)

Key observation: In G+, all shortest paths have w≥0(P ) ≤ ∆ (see next slide)

⇒ Expected cuts ≤ ℓ(n)
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Key Observation: Bounding Positive Weight
Claim: In G+, all shortest paths P have
w≥0(P ) ≤ ∆

Proof: Suppose w≥0(P ) > ∆

▶ Write P = s → u
P1−→ v

▶ w(P ) ≤ 0 (0-wt edge s → v)

▶ So w(P1) ≤ 0 with w≥0(P1) > ∆

⇒ Negative weight of P1 < −∆

In G: negative weights ×2
⇒ wG(P1) < −∆

But: ∃ path P2 : v → u with wG(P2) ≤ ∆
(diameter bound)

P1 + P2 is a negative cycle in G ⇒⇐
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[BCF’23] Running Time

Two sources of O(log2 n) overhead: [[BCF’23] has ℓ(n) = O(logn)]

▶ Decomposition: O(logn) per level × O(log n) levels

▶ BF/Dijkstra: O(ℓ(n)) expected cuts × O(log n) levels

To improve: Must reduce each to O(log n log logn)
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Low-Diameter Decomposition (LDD)

Definition
Delete random edges such that:

1. Each SCC has diameter ≤ ∆

2. Each edge cut with probability ≤ w(e) · ℓ(n)/∆

Our LDD achieves:

▶ Runtime O((m+ n log logn) · logn log log n)

▶ Loss ℓ(n) = O(logn log log n)
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Our New LDD

Two key improvements:

▶ CKR instead of geometric ball-growing
▶ Process balls in random order [Calinescu-Karloff-Rabani]

▶ Preprocessing: heavy vertex elimination
▶ Ensure all balls contain ≤ 75% of edges
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Results

Theorem
Directed LDD with loss O(log n log log n) in expected time

O((m+ n log log n) logn log log n)

Theorem
Negative-weight SSSP in time

O((m+ n log log n) · log(nW ) · logn log log n)

Bonus: Direct negative cycle finding (no noisy binary search [BCF’23])
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Summary
Main contribution: Faster directed LDD

▶ CKR ball-growing with random ordering

▶ Heavy vertex elimination preprocessing

▶ Loss O(log n log logn), matching Bringmann-Fischer-Haeupler-Latypov [2025]

▶ O(log3 n) faster than [BFHL’25]

Application: Nearly logn factor speedup for negative-weight SSSP

Open questions:

▶ Directed LDD: O(logn) loss? (matching undirected)

▶ Negative-weight SSSP: Near-linear time for non-integer weights?

Thank you!
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