Faster Negative-Weight Shortest Paths and
Directed Low-Diameter Decompositions

Jason Li'! Connor Mowry? Satish Rao®

LCarnegie Mellon University
2University of lllinois Urbana-Champaign

3UC Berkeley

SODA 2026

1/15

Negative-Weight Single-Source Shortest Paths

Input: Directed graph G = (V, E,w) with w: E' — Z and source s € V/
Goal: Compute shortest paths from s to all vertices

Assumptions:

> No negative-weight cycles

Challenge: Dijkstra's algorithm requires non-negative edge weights

2/15

Our Result

O((m + nloglogn) - log(nW) - log nlog log n)

W = maximum absolute value of a negative edge weight

Algorithm Running Time

Bellman-Ford [1958] O(mn)

Gabow-Tarjan [1989] O(m+/nlog(nW))
Bernstein-Nanongkai-Wulff-Nilsen [2022] O(m log® nlog W)

Bringmann-Cassis-Fischer [2023] O((m + nloglogn)log(nW) - log” n)

This paper O((m + nloglogn)log(nW) - log nloglogn)

Nearly logn factor improvement over [BCF'23]

3/15

Idea: Remove Negative Edges
If all edges are non-negative: Run Dijkstra in O(m + nloglogn)

Johnson’s reweighting: Transform edge weights using a potential function

Given ¢ : V — Z, define:

we(u,v) = w(u,v) + ¢(u) — ¢(v)

4/15

Idea: Remove Negative Edges
If all edges are non-negative: Run Dijkstra in O(m + nloglogn)

Johnson’s reweighting: Transform edge weights using a potential function

Given ¢ : V — Z, define:

wg(u,v) = w(u,v) + ¢(u) — $(v)
Key property: For any path P from s to t:
wg(P) = w(P) + ¢(s) — (1)
= Shortest paths are preserved!

4/15

Making All Edges Non-Negative

Observation: If ¢(v) = shortest path distance from s to v, then:
’(U¢(u,1j) = w(u, U) + QS(,U’) - d)(’U) >0

Why? Triangle inequality: ¢(u) + w(u,v) > ¢(v)

5/15

Making All Edges Non-Negative

Observation: If ¢(v) = shortest path distance from s to v, then:

we(u,v) = w(u,v) + ¢(u) — ¢(v) = 0

Why? Triangle inequality: ¢(u) + w(u,v) > ¢(v)

The catch: Computing ¢ is the shortest path problem!

Our approach: Make incremental progress
» Halve the most negative weight

> Make only some edges non-negative

5/15

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let —W be the most negative edge weight in G

Define: G = G with:
» All weights increased by W/2

» Source s added with 0-weight edges to all vertices

6/15

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let —W be the most negative edge weight in G

Define: G = G with:
» All weights increased by W/2

» Source s added with 0-weight edges to all vertices

Key insight: If ¢ makes (G)4 non-negative, then:

we,(€) = w,),(e) —W/2>-W/2

6/15

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let —W be the most negative edge weight in G

Define: G = G with:
» All weights increased by W/2
» Source s added with 0-weight edges to all vertices

Key insight: If ¢ makes (G)4 non-negative, then:

we,(€) = w,),(e) —W/2>-W/2

Algorithm:
1. Compute ¢ making G+ non-negative [Inner problem]
2. Apply ¢ to G [Most negative weight halved!]

3. Repeat O(log(nW)) times until negative weights can be rounded to 0

6/15

Inner Problem: Making G, Non-Negative [BCF'23]
Goal: Compute ¢ such that (G), has all non-negative edges
Recursive parameter: Diameter bound A
Decomposition Lemma
Delete few edges so that each SCC either:

» Has < 3/4 of the vertices, or
» Has diameter < A/2

7/15

Inner Problem: Making G, Non-Negative [BCF'23]
Goal: Compute ¢ such that (G), has all non-negative edges

Recursive parameter: Diameter bound A

Decomposition Lemma

Delete few edges so that each SCC either:
» Has < 3/4 of the vertices, or
» Has diameter < A/2

Algorithm:
1. Decompose
2. Recurse on SCCs to fix edges within SCCs
3. Fix DAG edges [Linear time]
4. Fix cut edges via Bellman-Ford/Dijkstra

7/15

Inner Problem: Decomposition Structure

Algorithm:
1. Decompose
2. Recurse on SCCs to fix edges within SCCs
3. Fix DAG edges [Linear time]
4. Fix cut edges via Bellman-Ford/Dijkstra

8/15

Bellman-Ford /Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only cut edges can be negative

BF /Dijkstra hybrid:
P Alternates Dijkstra iterations with Bellman-Ford relaxations

> After ¢ iterations: found shortest paths using < ¢ negative edges

9/15

Bellman-Ford /Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only cut edges can be negative

BF /Dijkstra hybrid:
P Alternates Dijkstra iterations with Bellman-Ford relaxations

> After ¢ iterations: found shortest paths using < ¢ negative edges
Running time depends on # cut edges on shortest paths
Loss factor /(n): Each edge cut with probability < w(e) - £(n)/A
{(n)

= Expected cuts on path P: at most w>q(P) - A (w>o = negative edges set to 0)

9/15

Bellman-Ford /Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only cut edges can be negative

BF /Dijkstra hybrid:
P Alternates Dijkstra iterations with Bellman-Ford relaxations

> After ¢ iterations: found shortest paths using < ¢ negative edges

Running time depends on # cut edges on shortest paths

Loss factor /(n): Each edge cut with probability < w(e) - £(n)/A

tn)
A

Key observation: In G, all shortest paths have w>o(P) < A (see next slide)

= Expected cuts on path P: at most w>q(P) - (w>o = negative edges set to 0)

= Expected cuts < 4(n)

9/15

Key Observation: Bounding Positive Weight

Claim: In G, all shortest paths P have
’LUZ()(P) < A

10/15

Key Observation: Bounding Positive Weight

Claim: In G, all shortest paths P have
’LUZ()(P) < A

Proof: Suppose w>o(P) > A

> WriteP:s—>ui>U

. > w(P)<0 (0-wt edge s — v)
» So w(P) <0 with w>o(F1) > A
= Negative weight of P, < —A

10/15

Key Observation: Bounding Positive Weight

Claim: In G, all shortest paths P have
’LUZ()(P) < A

Proof: Suppose w>o(P) > A
> Write P = s — u -5 0
> w(P)<0 (0-wt edge s — v)

~ > So ’LU(Pl) < 0 with wzo(Pl) > A
= Negative weight of P} < —A

N

In G: negative weights x2
= wg(P) < —A

10/15

Key Observation: Bounding Positive Weight

Claim: In G, all shortest paths P have
’LUZ()(P) < A

Proof: Suppose w>o(P) > A

> WriteP:s—>ui>U

> w(P)<0 (0-wt edge s — v)
» So w(P) <0 with w>o(F1) > A

= Negative weight of P, < —A

In G: negative weights x2
= wg(P) < —A

But: 3 path P»: v — u with wg(P) < A
(diameter bound)

10/15

Key Observation: Bounding Positive Weight

Claim: In G, all shortest paths P have
’LUZ()(P) < A

Proof: Suppose w>o(P) > A
> Write P = s — u -5 0
> w(P)<0 (0-wt edge s — v)

> So w(Pl) < 0 with wzo(Pl) > A
= Negative weight of P} < —A

In G: negative weights x2
= wg(P) < —A

But: 3 path P»: v — u with wg(P) < A
(diameter bound)

P; + P, is a negative cycle in G =<«

10/15

[BCF'23] Running Time

Two sources of O(log?n) overhead: [[BCF'23] has 4(n) = O(log n)]

» Decomposition: O(logn) per level x O(logn) levels

» BF/Dijkstra: O({(n)) expected cuts x O(logn) levels

11/15

[BCF'23] Running Time

Two sources of O(log?n) overhead: [[BCF'23] has 4(n) = O(log n)]

» Decomposition: O(logn) per level x O(logn) levels

» BF/Dijkstra: O({(n)) expected cuts x O(logn) levels

To improve: Must reduce each to O(lognloglogn)

11/15

Low-Diameter Decomposition (LDD)

Definition
Delete random edges such that:
1. Each SCC has diameter < A

2. Each edge cut with probability < w(e) - £(n)/A

12/15

Low-Diameter Decomposition (LDD)

Definition
Delete random edges such that:
1. Each SCC has diameter < A

2. Each edge cut with probability < w(e) - £(n)/A

Our LDD achieves:
» Runtime O((m + nloglogn) - lognloglogn)
» Loss ¢(n) = O(lognloglogn)

12/15

Our New LDD

Two key improvements:

» CKR instead of geometric ball-growing
> Process balls in random order [Calinescu-Karloff-Rabani]

> Preprocessing: heavy vertex elimination
» Ensure all balls contain < 75% of edges

13/15

Results

Theorem
Directed LDD with loss O(lognloglogn) in expected time

O((m + nloglogn)log nloglogn)

14/15

Results

Theorem
Directed LDD with loss O(lognloglogn) in expected time

O((m + nloglogn)log nloglogn)

Theorem
Negative-weight SSSP in time

O((m + nloglogn) - log(nW) - log nloglogn)

Bonus: Direct negative cycle finding (no noisy binary search [BCF'23])

14/15

Summary
Main contribution: Faster directed LDD
» CKR ball-growing with random ordering
P> Heavy vertex elimination preprocessing

» Loss O(lognloglogn), matching Bringmann-Fischer-Haeupler-Latypov [2025]
» O(log®n) faster than [BFHL'25]

Application: Nearly logn factor speedup for negative-weight SSSP

15/15

Summary
Main contribution: Faster directed LDD
» CKR ball-growing with random ordering
P> Heavy vertex elimination preprocessing
» Loss O(lognloglogn), matching Bringmann-Fischer-Haeupler-Latypov [2025]
» O(log®n) faster than [BFHL'25]

Application: Nearly logn factor speedup for negative-weight SSSP

Open questions:
» Directed LDD: O(logn) loss? (matching undirected)
> Negative-weight SSSP: Near-linear time for non-integer weights?

Thank you!

15/15

	Problem Definition
	Johnson's Reweighting
	The BCF Framework
	Our Contribution: Improved LDD

