

Faster Negative-Weight Shortest Paths and Directed Low-Diameter Decompositions

Jason Li¹ Connor Mowry² Satish Rao³

¹Carnegie Mellon University

²University of Illinois Urbana-Champaign

³UC Berkeley

SODA 2026

Negative-Weight Single-Source Shortest Paths

Input: Directed graph $G = (V, E, w)$ with $w : E \rightarrow \mathbb{Z}$ and source $s \in V$

Goal: Compute shortest paths from s to all vertices

Assumptions:

- ▶ No negative-weight cycles

Challenge: Dijkstra's algorithm requires **non-negative** edge weights

Our Result

$$O((m + n \log \log n) \cdot \log(nW) \cdot \log n \log \log n)$$

W = maximum absolute value of a negative edge weight

Algorithm	Running Time
Bellman-Ford [1958]	$O(mn)$
Gabow-Tarjan [1989]	$O(m\sqrt{n} \log(nW))$
Bernstein-Nanongkai-Wulff-Nilsen [2022]	$O(m \log^8 n \log W)$
Bringmann-Cassis-Fischer [2023]	$O((m + n \log \log n) \log(nW) \cdot \log^2 n)$
This paper	$O((m + n \log \log n) \log(nW) \cdot \log n \log \log n)$

Nearly $\log n$ factor improvement over [BCF'23]

Idea: Remove Negative Edges

If all edges are non-negative: Run Dijkstra in $O(m + n \log \log n)$

Johnson's reweighting: Transform edge weights using a **potential function**

Given $\phi : V \rightarrow \mathbb{Z}$, define:

$$w_\phi(u, v) = w(u, v) + \phi(u) - \phi(v)$$

Idea: Remove Negative Edges

If all edges are non-negative: Run Dijkstra in $O(m + n \log \log n)$

Johnson's reweighting: Transform edge weights using a **potential function**

Given $\phi : V \rightarrow \mathbb{Z}$, define:

$$w_\phi(u, v) = w(u, v) + \phi(u) - \phi(v)$$

Key property: For any path P from s to t :

$$w_\phi(P) = w(P) + \phi(s) - \phi(t)$$

⇒ Shortest paths are preserved!

Making All Edges Non-Negative

Observation: If $\phi(v)$ = shortest path distance from s to v , then:

$$w_\phi(u, v) = w(u, v) + \phi(u) - \phi(v) \geq 0$$

Why? Triangle inequality: $\phi(u) + w(u, v) \geq \phi(v)$

Making All Edges Non-Negative

Observation: If $\phi(v)$ = shortest path distance from s to v , then:

$$w_\phi(u, v) = w(u, v) + \phi(u) - \phi(v) \geq 0$$

Why? Triangle inequality: $\phi(u) + w(u, v) \geq \phi(v)$

The catch: Computing ϕ is the shortest path problem!

Our approach: Make [incremental progress](#)

- ▶ Halve the most negative weight
- ▶ Make only some edges non-negative

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let $-W$ be the most negative edge weight in G

Define: $G_+ = G$ with:

- ▶ All weights increased by $W/2$
- ▶ Source s added with 0-weight edges to all vertices

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let $-W$ be the most negative edge weight in G

Define: $G_+ = G$ with:

- ▶ All weights increased by $W/2$
- ▶ Source s added with 0-weight edges to all vertices

Key insight: If ϕ makes $(G_+)_\phi$ non-negative, then:

$$w_{G_\phi}(e) = w_{(G_+)_\phi}(e) - W/2 \geq -W/2$$

Outer Problem: Halving the Most Negative Weight [BNW'22]

Let $-W$ be the most negative edge weight in G

Define: $G_+ = G$ with:

- ▶ All weights increased by $W/2$
- ▶ Source s added with 0-weight edges to all vertices

Key insight: If ϕ makes $(G_+)_\phi$ non-negative, then:

$$w_{G_\phi}(e) = w_{(G_+)_\phi}(e) - W/2 \geq -W/2$$

Algorithm:

1. Compute ϕ making G_+ non-negative [Inner problem]
2. Apply ϕ to G [Most negative weight halved!]
3. Repeat $O(\log(nW))$ times until negative weights can be rounded to 0

Inner Problem: Making G_+ Non-Negative [BCF'23]

Goal: Compute ϕ such that $(G_+)_\phi$ has all non-negative edges

Recursive parameter: Diameter bound Δ

Decomposition Lemma

Delete **few** edges so that each SCC either:

- ▶ Has $\leq 3/4$ of the vertices, or
- ▶ Has diameter $\leq \Delta/2$

Inner Problem: Making G_+ Non-Negative [BCF'23]

Goal: Compute ϕ such that $(G_+)_\phi$ has all non-negative edges

Recursive parameter: Diameter bound Δ

Decomposition Lemma

Delete **few** edges so that each SCC either:

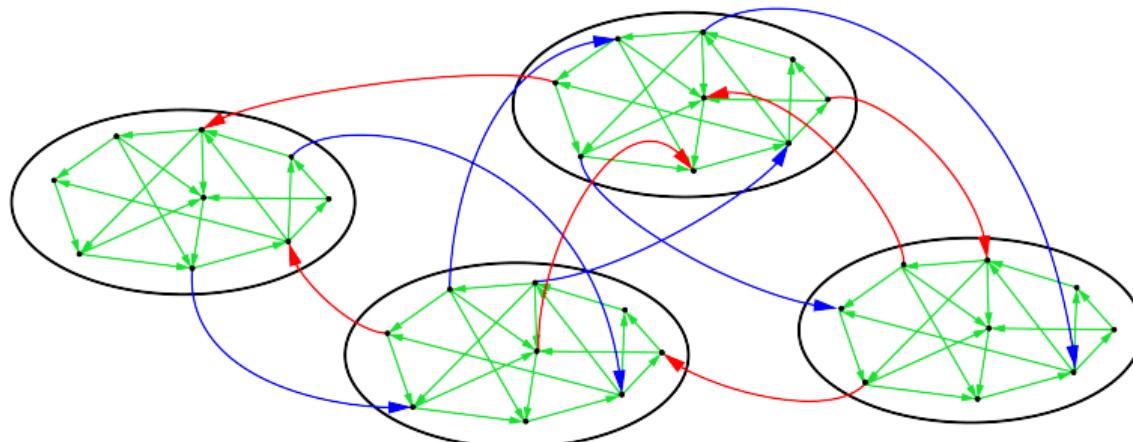
- ▶ Has $\leq 3/4$ of the vertices, or
- ▶ Has diameter $\leq \Delta/2$

Algorithm:

1. Decompose
2. Recurse on SCCs to fix edges **within SCCs**
3. Fix **DAG** edges
4. Fix **cut** edges via Bellman-Ford/Dijkstra

[Linear time]

Inner Problem: Decomposition Structure



Algorithm:

1. Decompose
2. Recurse on SCCs to fix edges **within** SCCs
3. Fix **DAG** edges [Linear time]
4. Fix **cut** edges via Bellman-Ford/Dijkstra

Bellman-Ford/Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only **cut** edges can be negative

BF/Dijkstra hybrid:

- ▶ Alternates Dijkstra iterations with Bellman-Ford relaxations
- ▶ After i iterations: found shortest paths using $\leq i$ negative edges

Bellman-Ford/Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only **cut** edges can be negative

BF/Dijkstra hybrid:

- ▶ Alternates Dijkstra iterations with Bellman-Ford relaxations
- ▶ After i iterations: found shortest paths using $\leq i$ negative edges

Running time depends on # cut edges on shortest paths

Loss factor $\ell(n)$: Each edge cut with probability $\leq w(e) \cdot \ell(n)/\Delta$

\Rightarrow Expected cuts on path P : at most $w_{\geq 0}(P) \cdot \frac{\ell(n)}{\Delta}$ ($w_{\geq 0}$ = negative edges set to 0)

Bellman-Ford/Dijkstra Hybrid [BCF'23]

After DAG edges are non-negative: Only **cut** edges can be negative

BF/Dijkstra hybrid:

- ▶ Alternates Dijkstra iterations with Bellman-Ford relaxations
- ▶ After i iterations: found shortest paths using $\leq i$ negative edges

Running time depends on # cut edges on shortest paths

Loss factor $\ell(n)$: Each edge cut with probability $\leq w(e) \cdot \ell(n)/\Delta$

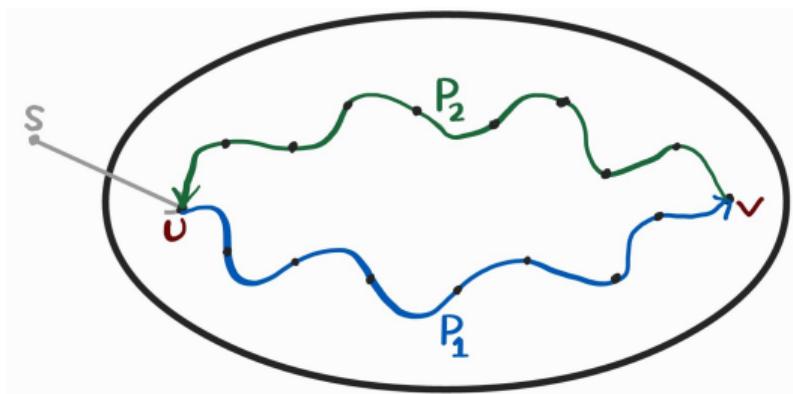
\Rightarrow Expected cuts on path P : at most $w_{\geq 0}(P) \cdot \frac{\ell(n)}{\Delta}$ ($w_{\geq 0}$ = negative edges set to 0)

Key observation: In G_+ , all shortest paths have $w_{\geq 0}(P) \leq \Delta$ (see next slide)

\Rightarrow Expected cuts $\leq \ell(n)$

Key Observation: Bounding Positive Weight

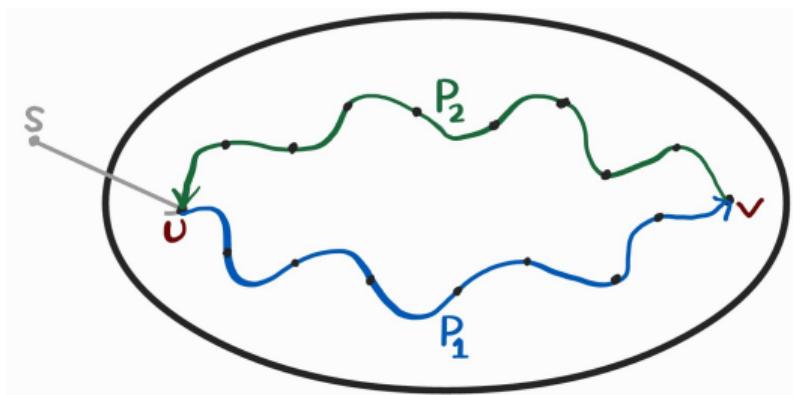
Claim: In G_+ , all shortest paths P have $w_{\geq 0}(P) \leq \Delta$



Key Observation: Bounding Positive Weight

Claim: In G_+ , all shortest paths P have $w_{\geq 0}(P) \leq \Delta$

Proof: Suppose $w_{\geq 0}(P) > \Delta$

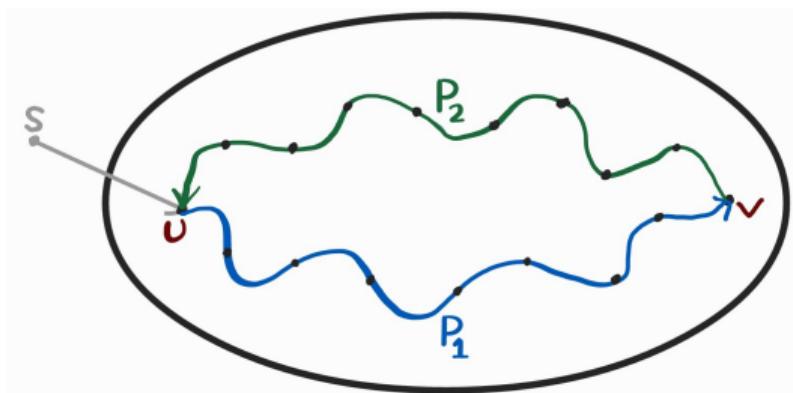


- ▶ Write $P = s \rightarrow u \xrightarrow{P_1} v$
- ▶ $w(P) \leq 0$ (0-wt edge $s \rightarrow v$)
- ▶ So $w(P_1) \leq 0$ with $w_{\geq 0}(P_1) > \Delta$
- ⇒ Negative weight of $P_1 < -\Delta$

Key Observation: Bounding Positive Weight

Claim: In G_+ , all shortest paths P have $w_{\geq 0}(P) \leq \Delta$

Proof: Suppose $w_{\geq 0}(P) > \Delta$



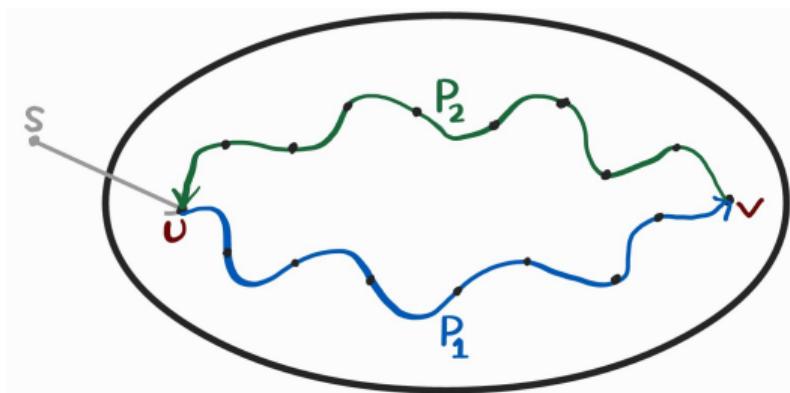
- ▶ Write $P = s \rightarrow u \xrightarrow{P_1} v$
- ▶ $w(P) \leq 0$ (0-wt edge $s \rightarrow v$)
- ▶ So $w(P_1) \leq 0$ with $w_{\geq 0}(P_1) > \Delta$
- ⇒ Negative weight of $P_1 < -\Delta$

In G : negative weights $\times 2$
 $\Rightarrow w_G(P_1) < -\Delta$

Key Observation: Bounding Positive Weight

Claim: In G_+ , all shortest paths P have $w_{\geq 0}(P) \leq \Delta$

Proof: Suppose $w_{\geq 0}(P) > \Delta$



- ▶ Write $P = s \rightarrow u \xrightarrow{P_1} v$
- ▶ $w(P) \leq 0$ (0-wt edge $s \rightarrow v$)
- ▶ So $w(P_1) \leq 0$ with $w_{\geq 0}(P_1) > \Delta$
- ⇒ Negative weight of $P_1 < -\Delta$

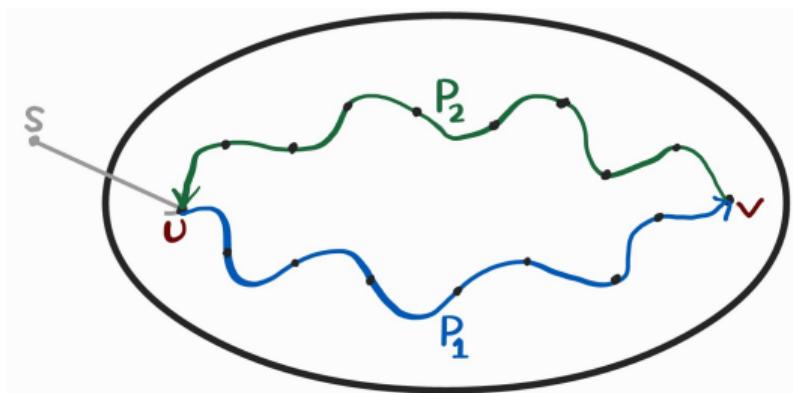
In G : negative weights $\times 2$
 $\Rightarrow w_G(P_1) < -\Delta$

But: \exists path $P_2 : v \rightarrow u$ with $w_G(P_2) \leq \Delta$
(diameter bound)

Key Observation: Bounding Positive Weight

Claim: In G_+ , all shortest paths P have $w_{\geq 0}(P) \leq \Delta$

Proof: Suppose $w_{\geq 0}(P) > \Delta$



- ▶ Write $P = s \rightarrow u \xrightarrow{P_1} v$
- ▶ $w(P) \leq 0$ (0-wt edge $s \rightarrow v$)
- ▶ So $w(P_1) \leq 0$ with $w_{\geq 0}(P_1) > \Delta$
- ⇒ Negative weight of $P_1 < -\Delta$

In G : negative weights $\times 2$
 $\Rightarrow w_G(P_1) < -\Delta$

But: \exists path $P_2 : v \rightarrow u$ with $w_G(P_2) \leq \Delta$
(diameter bound)

$P_1 + P_2$ is a negative cycle in $G \Rightarrow \Leftarrow$

[BCF'23] Running Time

Two sources of $O(\log^2 n)$ overhead:

[[BCF'23] has $\ell(n) = O(\log n)$]

- ▶ **Decomposition:** $O(\log n)$ per level \times $O(\log n)$ levels
- ▶ **BF/Dijkstra:** $O(\ell(n))$ expected cuts \times $O(\log n)$ levels

[BCF'23] Running Time

Two sources of $O(\log^2 n)$ overhead:

[[BCF'23] has $\ell(n) = O(\log n)$]

- ▶ **Decomposition:** $O(\log n)$ per level \times $O(\log n)$ levels
- ▶ **BF/Dijkstra:** $O(\ell(n))$ expected cuts \times $O(\log n)$ levels

To improve: Must reduce **each** to $O(\log n \log \log n)$

Low-Diameter Decomposition (LDD)

Definition

Delete random edges such that:

1. Each SCC has diameter $\leq \Delta$
2. Each edge cut with probability $\leq w(e) \cdot \ell(n)/\Delta$

Low-Diameter Decomposition (LDD)

Definition

Delete random edges such that:

1. Each SCC has diameter $\leq \Delta$
2. Each edge cut with probability $\leq w(e) \cdot \ell(n)/\Delta$

Our LDD achieves:

- ▶ Runtime $O((m + n \log \log n) \cdot \log n \log \log n)$
- ▶ Loss $\ell(n) = O(\log n \log \log n)$

Our New LDD

Two key improvements:

- ▶ CKR instead of geometric ball-growing
 - ▶ Process balls in random order [Calinescu-Karloff-Rabani]
- ▶ Preprocessing: heavy vertex elimination
 - ▶ Ensure all balls contain $\leq 75\%$ of edges

Results

Theorem

Directed LDD with loss $O(\log n \log \log n)$ in expected time

$$O((m + n \log \log n) \log n \log \log n)$$

Results

Theorem

Directed LDD with loss $O(\log n \log \log n)$ in expected time

$$O((m + n \log \log n) \log n \log \log n)$$

Theorem

Negative-weight SSSP in time

$$O((m + n \log \log n) \cdot \log(nW) \cdot \log n \log \log n)$$

Bonus: Direct negative cycle finding (no noisy binary search [BCF'23])

Summary

Main contribution: Faster directed LDD

- ▶ CKR ball-growing with random ordering
- ▶ Heavy vertex elimination preprocessing
- ▶ Loss $O(\log n \log \log n)$, matching Bringmann-Fischer-Haeupler-Latypov [2025]
- ▶ $\mathcal{O}(\log^3 n)$ faster than [BFHL'25]

Application: Nearly $\log n$ factor speedup for negative-weight SSSP

Summary

Main contribution: Faster directed LDD

- ▶ CKR ball-growing with random ordering
- ▶ Heavy vertex elimination preprocessing
- ▶ Loss $O(\log n \log \log n)$, matching Bringmann-Fischer-Haeupler-Latypov [2025]
- ▶ $\mathcal{O}(\log^3 n)$ faster than [BFHL'25]

Application: Nearly $\log n$ factor speedup for negative-weight SSSP

Open questions:

- ▶ **Directed LDD:** $O(\log n)$ loss? (matching undirected)
- ▶ **Negative-weight SSSP:** Near-linear time for non-integer weights?

Thank you!